No Image

Что такое коронный разряд

СОДЕРЖАНИЕ
2 просмотров
12 марта 2020

В условиях резко неоднородных электромагнитных полей, на электродах с высокой кривизной наружных поверхностей, в некоторых ситуациях может начаться коронный разряд — самостоятельный электрический разряд в газе. В качестве острия, подходящей для данного явления формы, может выступать: острие, провод, угол, зубец и т. д.

Главное условие для начала разряда — вблизи острого края электрода должна присутствовать сравнительно более высокая напряженность электрического поля, чем на остальном пути между электродами, создающими разность потенциалов. Для воздуха в нормальных условиях (при атмосферном давлении), предельное значение электрической напряженности составляет 30кВ/см, при такой напряженности на острие электрода уже появляется слабое свечение, напоминающее по форме корону. Вот почему разряд называется коронным разрядом.

Для такого разряда характерно протекание процессов ионизации только возле коронирующего электрода, при этом второй электрод может выглядеть вполне обычно, то есть без образования короны. Коронные разряды можно наблюдать иногда и в природных условиях, например на верхушках деревьев, когда этому способствует картина распределения природного электрического поля (перед грозой или в метель).

Процесс формирования коронного разряда протекает следующим образом. Молекула воздуха случайно ионизируется, при этом вылетает электрон. Электрон испытывает ускорение в электрическом поле возле острия, и достигает достаточной энергии, чтобы как только встретит на своем пути следующую молекулу — ионизировать и ее, и снова вылетает электрон. Число заряженных частиц, движущихся в электрическом поле возле острия, лавинообразно увеличивается.

Если острым коронирующим электродом является отрицательный электрод (катод), в этом случае корона будет называться отрицательной, и лавина электронов ионизации будет двигаться от коронирующего острия — в сторону положительного электрода. Образованию свободных электронов способствует термоэлектронная эмиссия на катоде.

Когда движущаяся от острия лавина электронов достигает той области, где напряженности электрического поля оказывается уже не достаточно для дальнейшей лавинной ионизации, электроны рекомбинируют с нейтральными молекулами воздуха, образуя отрицательные ионы, которые далее становятся носителями тока в наружной от короны области. Отрицательная корона имеет характерное ровное свечение.

В случае, когда источником короны является положительный электрод (анод), движение лавин электронов направлено к острию, а движение ионов — наружу от острия. Вторичные фотопроцессы возле положительно заряженного острия способствуют воспроизведению запускающих лавину электронов. Вдали от острия, где напряженность электрического поля не достаточна для обеспечения лавинной ионизации, носителями тока остаются положительные ионы, движущиеся в сторону отрицательного электрода. Для положительной короны характерны стримеры, распускающиеся в разные стороны от острия, а при более высоком напряжении стримеры приобретают вид искровых каналов.

На проводах высоковольтных линий электропередач тоже возможна корона, причем здесь это явление приводит к потерям электроэнергии. Для борьбы с данным явлением, провода ЛЭП расщепляют на несколько штук, в зависимости от напряжения на линии, чтобы уменьшить локальные напряженности вблизи проводов, и предотвратить образование короны в принципе.

Когда погода (температура и влажность воздуха) способствует потерям на корону, целесообразно уменьшить напряжение на линии до определенной величины. Так, для избежания короны на линиях с напряжением 110кВ сечение провода делают равным минимум 95кв.мм, для 150кВ — 120кв.мм, для 220кВ — 240кв.мм.

Кроме того на высоковольтных ЛЭП применяют анти-коронные кольца, представляющие собой тороиды из проводящего материала, обычно металла, который прикреплен к терминалу или другой аппаратной части высоковольтного оборудования. Роль коронирующего кольца заключается в распределении градиента электрического поля и понижении его максимальных значений ниже порога короны, таким образом коронный разряд предотвращается полностью, либо разрушительные эффекты разряда хотя бы переносятся от ценного оборудования — на кольцо.

Практическое применение коронный разряд находит в электростатических очистителях газов, а также для обнаружения трещин в изделиях. В копировальной технике — для заряда и разряда фотобарабанов, и для переноса красящего порошка на бумагу. Кроме того, при помощи коронного разряда можно определить давление внутри лампы накаливания (по размеру короны в одинаковых лампах).

Искровой разряд возникает в тех случаях, когда напряженность электрического поля достигает пробивного для данного газа значения Значение зависит от давления газа; для воздуха при атмосферном давлении оно составляет около . С увеличением давления возрастает. Согласно экспериментальному закону Пашена отношение пробивной напряженности поля к давлению приблизительно постоянно:

Искровой разряд сопровождается образованием ярко светящегося извилистого, разветвленного канала, по которому проходит кратковременный импульс тока большой силы. Примером можт служить молния; длина ее бывает до 10 км, диаметр канала — до 40 см, сила тока может достигать 100 000 и более ампер, продолжительность импульса составляет около .

Каждая молния состоит из нескольких (до 50) импульсов, следующих по одному и тому же каналу; их общая длительность (вместе с промежутками между импульсами) может достигать нескольких секунд. Температура газа в искровом канале бывает до 10000 К. Быстрый сильный нагрев газа приводит к резкому повышению давления и возникновению ударных и звуковых волн. Поэтому искровой разряд сопровождается звуковыми явлениями — от слабого треска при искре малой мощности до раскатов грома, сопровождающих молнию.

Читайте также:  Орнамент для трафарета на стену

Возникновению искры предшествует образование в газе сильно ионизированного канала, получившего название стримера. Этот канал получается путем перекрытия отдельных электронных лавин, возникающих на пути искры. Родоначальником каждой лавины служит электрон, образующийся путем фотоионизации. Схема развития стримера показана на рис. 87.1. Пусть напряженность поля такова, что электрон, вылетевший за счет какого-либо процесса из катода, приобретает на длине свободного пробега энергию, достаточную для ионизации.

Поэтому происходит размножение электронов — возникает лавина (образующиеся при этом положительные ионы не играют существенной роли вследствие гораздо меньшей подвижности; они лишь обусловливают пространственный заряд, вызывающий перераспределение потенциала). Коротковолновое излучение, испускаемое атомом, у которого при ионизации был вырван один из внутренних электронов (это излучение показано на схеме волнистыми линиями), вызывает фотоионизацию молекул, причем образовавшиеся электроны порождают все новые лавины. После перекрывания лавин образуется хорошо проводящий канал — стример, по которому устремляется от катода к аноду мощный поток электронов — происходит пробой.

Если электроды имеют форму, при которой поле в межэлектродном пространстве приблизительно однородно (например, представляет собой шары достаточно большого диаметра), то пробой возникает при вполне определенном напряжении значение которого зависит от расстояния между шарами . На этом основан искровой вольтметр, с помощью которого измеряют высокое напряжение . При измерениях определяется наибольшее расстояние при котором возникает искра. Умножив затем на получают значение измеряемого напряжения.

Если один из электродов (или оба) имеет очень большую кривизну (например, электродом служит тонкая проволока или острие) то при не слишком большом напряжении возникает так называемый коронный разряд. При увеличении напряжения этот разряд переходит в искровой или дуговой.

При коронном разряде ионизация и возбуждение молекул происходят не во всем межэлектродном пространстве, а лишь вблизи электрода с малым радиусом кривизны, где напряженность ноля достигает значений, равных или превышающих . В этой части разряда газ светится. Свечение имеет вид короны, окружающей электрод, чем и вызвано название этого вида разряда. Коронный разряд с острия имеет вид светящейся кисти, в связи с чем его иногда называют кистевым разрядом. В зависимости от знака коронирующего электрода говорят о положительной или отрицательной коронах. Между коронирующим слоем и некоронирующим электродом расположена внешняя область короны. Режим пробоя существует только в пределах коронирующего слоя. Поэтому можно сказать, что коронный разряд представляет собой неполный пробой газового промежутка.

В случае отрицательной короны явления на катоде сходны с явлениями на катоде тлеющего разряда. Ускоренные полем положительные ионы выбивают из катода электроны, которые вызывают ионизацию и возбуждение молекул в коронирующем слое. Во внешней области короны поле недостаточно для того, чтобы сообщить электронам энергию, необходимую для ионизации или возбуждения молекул.

Поэтому проникшие в эту область электроны дрейфуют под действием ноля к аноду. Часть электронов захватывается молекулами, вследствие чего образуются отрицательные ионы. Таким образом, ток во внешней области обусловливается только отрицательными носителями — электронами и отрицательными ионами. В этой области разряд имеет несамостоятельный характер.

В положительной короне электронные лавины зарождаются у внешней границы короны и устремляются к коронирующему электроду — аноду. Возникновение электронов, порождающих лавины, обусловлено фотоионизацией, вызванной излучением коронирующего слоя. Носителями тока во внешней области короны служат положительные ионы, которые дрейфуют под действием поля к катоду.

Если оба электрода имеют большую кривизну (два коронирующих электрода), вблизи каждого из них протекают процессы, присущие коронирующему электроду данного знака. Оба коронирующих слоя разделяются внешней областью, в которой движутся встречные потоки положительных и отрицательных носителей тока. Такая корона называется двуполярной.

Упоминавшийся в § 82 при рассмотрении счетчиков самостоятельный газовый разряд представляет собой коронный разряд.

Толщина коронирующего слоя и сила разрядного тока растут с увеличением напряжения. При небольшом напряжении размеры короны малы и ее свечение незаметно. Такая микроскопическая корона возникает вблизи острия, с которого стекает электрический ветер (см. § 24).

Корона, появляющаяся под действием атмосферного электричества на верхушках корабельных мачт, деревьев и т. п., получила в старину название огней святого Эльма.

В высоковольтных устройствах, в частности в линиях высоковольтных передач, коронный разряд приводит к вредным утечкам тока. Поэтому приходится принимать меры для его предотвращения. С этой целью, например, провода высоковольтных линий берут достаточно большого диаметра, тем большего, чем выше напряжение линии.

Полезное применение в технике коронный разряд нашел в электрофильтрах. Очищаемый газ движется в трубе, по оси которой расположен отрицательный коронирующий электрод. Отрицательные ионы, имеющиеся в большом количестве во внешней области короны, оседают на загрязняющих газ частицах или капельках и увлекаются вместе с ними к внешнему некоронирующему электроду. Достигнув этого электрода, частицы нейтрализуются и оседают на нем. Впоследствии при ударах по трубе осадок, образованный уловленными частицами, осыпается в сборник.

Читайте также:  Фасады зданий с колоннами

Коронный разряд – это процесс ионизации воздуха вдоль провода под действием сильных электромагнитных полей.

Теория ионизации воздуха

Ионизацию воздуха заметили давно, но не сумели правильно истолковать. С появлением в середине XVIII века первых электростатических генераторов разряд стал обычным явлением. Даже успели попробовать на себе жестокое действие лейденской банки. Истинные опыты с электричеством начались после изобретения Вольтой гальванического источника энергии.

Первую в мире дугу получил в 1802 году русский учёный с запоминающейся фамилией Петров. Он предсказал возможность использования сего для целей освещения. Сильную досаду вызывает факт, что весь учёный мир обратил внимание на явление. И оказывалось ясно, куда в действительности течёт электрический ток. Ведь отрицательный угольный электрод заострялся под действием дуги, а на аноде образовывалась небольшая ямка. Учёный мир увидел в этом правоту Бенджамина Франклина: заряды наращивают отрицательный угольный стержень, будучи положительны. И лишь к началу XX века, когда опыты с катодными лучами дали первые результаты, стало понятно, что 100 лет назад совершена большая ошибка.

При горении дуги пять шестых светового потока даёт анод. Его температура в стандартных физических опытах составляет 4000 градусов Цельсия. Это на 1000 больше, нежели у катода, дающего 10% светового потока. Прочее берётся от дуги непосредственно, за счёт мерцания ионизированного газа. При столь высоких температурах начинают плавиться даже керамика и вольфрам. Сварку изобрели гораздо позже, с 80-х годов (XIX века) электрод угольный, позже Н.Г. Славянов предложить использовать металлический.

Опыт Павлова повторил Дэви, прочие дугой пока не занимались. С его подачи началось исследование разряда в среде газа. Обнаружены первые линейчатые спектры. Фарадей и Уитстон в 30-х годах изучали разряд в разреженных газах. Видя усердие англичан, иностранный инженер, принявший российское подданство, Якоби попробовал применить угольный стрежень для освещения улиц Санкт-Петербурга (1846 год). Но анод быстро выгорал, увеличивая искровой промежуток, и лампа гасла. Ситуацию решил Яблочков, это уже случилось через 30 лет, когда век угольных разрядников подходил к концу. Они находили применение в узких областях долгое время, к примеру, при освещении неба в период Второй мировой войны и отражения вражеских налётов.

Катушка Румкорфа (ориентировочно 1846 год) окончательно убедила людей, что высокое напряжение способно создать искру, а Никола Тесла показал, что при помощи экрана Фарадея даже простой смертный сумеет направлять молнии в нужном направлении. Языки пламени в ночном небе над башней Ворденклиф называют самым невероятным коронным разрядом в истории человечества, если не считать устроенного позднее великим изобретателем на крышах Нью-Йорка.

Схема возникновения коронного разряда

Точного определения коронного разряда в литературе не встречается. По простой причине нежелания авторов разбираться с темой и обилием дублирующейся информации, упускающей смысл из содержания. Определение коронного разряда, данное в начале, тоже нельзя назвать физически точным. Корректная трактовка большинством читателей не воспримется из-за наличия специфических особенностей. В физике принято прохождение тока через воздух делить на три участка, видных на графике:

  1. Первый подчиняется закону Ома для участка цепи и прямой. Здесь протекание тока возможно за счёт внешней ионизации: пламенем, ультрафиолетом, радиоактивным или высокочастотным излучением. Первые два фактора уже были известны Вольте (до открытия «животного электричества» Гальвани), предлагавшему снимать статический заряд с резины электрофоруса лучами Солнца или свечой.
  2. Второй участок находится в области насыщения. Учёные говорят, что ток остаётся сравнительно постоянным, заряды при движении между электродами активно рекомбинируют. И при растущей разнице потенциалов ничего не меняется. Пока напряжение не достигнет третьего участка.
  3. При высокой разнице потенциалов начинается лавинообразный процесс ударной ионизации. Электроны обретают столь высокую скорость, что выбивают электроны из молекул газа. На этом участке ток быстро растёт с повышением разницы потенциалов, возможно возникновение электрической дуги.

Разряд, наблюдаемый визуально, называется искровым и возникает после начала второго роста кривой. Вначале присутствует тихий разряд, глазу не заметный. Его часто называют несамостоятельным, нужен внешний ионизирующий фактор, чтобы поддержать движение носителей. Понижение напряжения вызывает немедленную рекомбинацию всех носителей.

Искровой разряд отмечается при напряжениях, где возможна лавинообразная ионизация. Искры проскакивают с частотой от 400 Гц и выше, что сопровождается различимым шумом. Напряжение после каждого разряда падает, чем обусловлено наличие свободного интервала. Визуально искры сливаются в одну. Подвидами указанного типа ионизации считаются родственные разряды:

  • Кистевой разряд похож на ладонь сказочного скелета. Образуется между острием и заряженной поверхностью. Заметно на нейтрализаторах электрофорной машины, изоляторах ЛЭП. Ионизация начинается со стороны острия, в этом месте напряжённость поля увеличена, заряды стекают в пространство, чем порождается лавинообразный процесс.
  • Коронный разряд вспыхивает между несколькими участками одного провода. Вызван ударной ионизацией воздуха. Своеобразные изломанные зубцы подобны молниям. Их причудливую траекторию учёные объясняют тем, что процесс ионизации распространяется по пути наименьшего сопротивления, в силу изотропности газа невозможно предсказать точный путь. Корона порой плавная и бывает положительной или отрицательной.
Читайте также:  Как устроена покрасочная камера

Коронный разряд ведёт к потере энергии на линии ЛЭП и происходит непрерывно, что различимо на слух как низкочастотный гул и треск. В дождливую погоду сопротивление провода падает, возможно появление языков ионизированного воздуха в виде маленьких молний, идущих вдоль провода или шаров. Коронный разряд используется в фильтрах очистки воздуха (ионизаторах, люстрах Чижевского), улавливая частицы дыма, пыли, заставляя их оседать.

Электрическая дуга

Сказанное выше не позволяет точно понять электрическую дугу. При определённом значении напряжения начинается ударная ионизация воздуха. Если разница потенциалов падает, ток не меняется либо растёт (см. газоразрядные лампы и люминесцентные лампы). Это так называемый участок с отрицательным дифференциальным сопротивлением. Процесс, идущий между электродами, именуется дугой. Разряд разжигается высоким напряжением и сближением стержней, а затем идёт самостоятельно.

Известно, что сварщик стучит электродом по детали, чтобы начать ударную ионизацию. Потом электрод удаляется, а дуга остаётся, не гаснет. Напряжение тоже низкое. В этом заключается особенность дуги. Это объясняет, почему открытые линии ЛЭП не несут вольтаж выше 2 МВ. А дальше начинается коронный разряд, возникает дуга, чтобы потушить, приходится приложить немало усилий.

Тесла строил башню Ворденклиф, чтобы добиться передачи энергии посредством коронного разряда. Созданной дуге предписывалось лететь на приёмник, а оттуда излучаться дальше, вокруг всего Земного шара. По замыслу Теслы требовалось построить передатчики, ловившие языки молний. Безопасность обеспечивалась высокой частотой напряжения (радиодиапазон).

Суммируя, нужно заметить, что электрическая дуга по-иному называется самостоятельным разрядом, процесс может поддерживаться.

Механизмы ионизации

Коронный разряд образуется на геометрических изломах вследствие повышенной напряжённости поля в этой области. На указанном принципе работают нейтрализаторы и стекатели. Явления, наблюдаемые при газовом разряде, количественно описываются двумя коэффициентами Таунсенда:

  • Альфа: коэффициент объёмной ионизации. Численно это количество ионизаций, производимых электроном на дистанции 1 см.
  • Гамма: описывает процесс ионизации на границе катод-газ. Здесь электроны покидают поверхность и начинают шествие вдоль силовых линий поля. Равен отношению покидающих катод электронов к числу падающих сюда ионов за единицу времени.

Оба коэффициента растут вместе с разницей потенциалов. После несамостоятельного разряда отмечается лавинообразная ионизация с образованием меж электродами облака положительного заряда. Этот момент соотносится с возникновением короны. Дальнейшее повышение напряжения приводит к нарушению стационарности положительного облака, и ток начинает колебаться в районе конкретного значения.

Изложенное называется теорией Роговского и поясняет, где возникает корона, как образуется искрение. Все определяется полётом электронов и пространственным распределением заряда. Главный признак – не происходит короткого замыкания цепи при коронном разряде, как происходит при искрении (кратковременно) или дуге (постоянно).

Коэффициент альфа определяет удалённость свечения от электрода. Гамма скорее характеризует геометрическую форму поверхности и разницу потенциалов, приведшую к появлению разряда.

Особенности коронного разряда

Коронный разряд обычно возникает в месте с наименьшим радиусом кривизны. Если это линия, максимальная вероятность образования проявляется на механическом дефекте. Область наиболее частого возникновения заряда называется коронирующей, либо коронирующим электродом. Проводник – под положительным или отрицательным потенциалом. Соответственно, различают и короны аналогичного рода (см. выше).

Положительный и отрицательный разряд отличаются внешним видом. В первом случае свечение равномерное, во втором имеются эпицентры по поверхности провода. Механизм процесса меж электродами:

  1. В начале возникает несамостоятельный разряд. Это происходит за счёт случайного действия: капли дождя, порыв ветра и пр.
  2. Если разница потенциалов продолжит расти, образуется слабое свечение в районе провода, сопровождаемое еле слышным потрескиванием. Вызывающее напряжение называется критическим, либо начальным.
  3. При дальнейшем росте разницы потенциалов (напряжение искрового пробоя) ток растёт по квадратичному закону, свечение становится сильнее. Начинают проскакивать искры со всевозрастающей частотой.
  4. Тотальное увеличение разницы потенциалов вызывает дуговой разряд, проявляющийся как короткое замыкание цепи. Его горение сложно остановить.

Важно! Критическое и искровое напряжение отличаются для положительной и отрицательной короны.

Итак, коронный разряд в лабораторной установке является предшественником искрового, а искровой – дугового. На практике при номинальном напряжении сети электрики не слишком беспокоятся о защите. Возможно повысить вольтаж на 10% без особого ущерба, если в указанной местности не бывает частой непогоды, преимущественно песчаных бурь.

Если расстояние между электродами слишком мало, коронный разряд не образуется: после несамостоятельного немедленно идёт искровой. Провода в ЛЭП стараются разнести на дистанцию, применяют керамические изоляторы. Коронный разряд часто заменяется кистевым, если присутствует ярко выраженное острие. Оба лишь формальное обозначение идентичного явления.

Комментировать
2 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector